Automated Machine Learning: Hyperparameter optimization, neural architecture search, and algorithm selection with cloud platforms

iebukes PACKT 150 次浏览 没有评论
Automated Machine Learning: Hyperparameter optimization, neural architecture search, and algorithm selection with cloud platforms Front Cover

Automated Machine Learning: Hyperparameter optimization, neural architecture search, and algorithm selection with cloud platforms

by Dr. Adnan Masood
  • Length: 235 pages
  • Edition: 1
  • Publisher: Packt Publishing
  • Publication Date: 2021-03-09
  • ISBN-10: 1800567685
  • ISBN-13: 9781800567689
Description

Follow a hands-on approach to AutoML implementation and associated methodologies and get to grips with automated machine learning

Key Features

  • Get up to speed with AutoML using the platform of your choice, such as OSS, Azure, AWS, or GCP
  • Eliminate mundane tasks in data engineering and reduce human errors in ML models that occur mainly due to manual steps
  • Make machine learning accessible for all users, helping promote a decentralized process

Book Description

Every machine learning engineer deals with systems that have hyperparameters, and the most basic task in automated machine learning (AutoML) is to automatically set these hyperparameters to optimize performance. The latest deep neural networks have a wide range of hyperparameters for their architecture, regularization, and optimization, which can be customized effectively to save time and effort.

This book reviews the underlying techniques of automated feature engineering, model and hyperparameter tuning, gradient-based approaches, and more. You’ll explore different ways of implementing these techniques in open-source tools. Next, you’ll focus on enterprise tools, learning different ways of implementing AutoML in three major cloud service providers, including Microsoft Azure, Amazon Web Services (AWS), and the Google Cloud Platform. As you progress, you’ll explore the features of cloud AutoML platforms by building machine learning models using AutoML. Later chapters will show you how to develop accurate models by automating time-consuming and repetitive tasks involved in the machine learning development lifecycle.

By the end of this book, you’ll be able to build and deploy automated machine learning models that are not only accurate, but also increase productivity, allow interoperability, and minimize featuring engineering tasks.

What you will learn

  • Explore AutoML fundamentals, underlying methods, and techniques
  • Assess AutoML aspects such as algorithm selection, auto featurization, and hyperparameter tuning in an applied scenario and differentiate between cloud and OSS offerings
  • Implement AutoML in tools such as AWS, Azure, and GCP and while deploying ML models and pipelines
  • Build explainable AutoML pipelines with transparency
  • Understand automated feature engineering and time series forecasting
  • Automate data science modeling tasks to implement ML solutions easily and focus on more complex problems

Who This Book Is For

Citizen data scientists, machine learning developers, artificial intelligence enthusiasts, or anyone looking to automatically build machine learning models using the features offered by open-source tools, Microsoft Azure Machine Learning, Amazon Web Services (AWS), and Google Cloud Platform will find this book useful.

Automated Machine Learning: Hyperparameter optimization, neural architecture search, and algorithm selection with cloud platforms

 

 亲,网盘文件已删,下载链接已失效


因为,我,失业了!于是我老家十八线小县城找了份掏下水道的工作。。。
 
为了生活
 
我决定将iebueks电子网站由免费改为赞助入群:
 
一年45元
 
从百度网盘群满之日算起。
 
这45元除了最新的英文IT电子书,还包括:

免费找书服务,中文英文皆可

国内出版社出版的中文电子书  
中文电子书
2022年公考资料
2022年公考资料
2023年考研学习资料
2023年考研学习资料
人人素材网各种视频素材模板以及中文字幕教程
人人素材网

入群指南


扫描下面二维码关注微信公众号获取资源

微信公众号二维码

发表评论

您的电子邮箱地址不会被公开。 必填项已用*标注

Go