Automated Machine Learning with Microsoft Azure: Build highly accurate and scalable end-to-end AI solutions with Azure AutoML

iebukes PACKT 140 次浏览 没有评论
Automated Machine Learning with Microsoft Azure: Build highly accurate and scalable end-to-end AI solutions with Azure AutoML Front Cover

Automated Machine Learning with Microsoft Azure: Build highly accurate and scalable end-to-end AI solutions with Azure AutoML

by Dennis Michael Sawyers
  • Length: 340 pages
  • Edition: 1
  • Publisher: Packt Publishing
  • Publication Date: 2021-04-23
  • ISBN-10: 1800565313
  • ISBN-13: 9781800565319
Description

A practical, step-by-step guide to using Microsoft’s AutoML technology on the Azure Machine Learning service for developers and data scientists working with the Python programming language

Key Features

  • Create, deploy, productionalize, and scale automated machine learning solutions on Microsoft Azure
  • Improve the accuracy of your ML models through automatic data featurization and model training
  • Increase productivity in your organization by using artificial intelligence to solve common problems

Book Description

Automated Machine Learning with Microsoft Azure helps you to build high-performing, accurate machine learning models in record time. It allows anyone to easily harness the power of artificial intelligence and increase the productivity and profitability of your business. With a series of clicks on a guided user interface (GUI), novices and seasoned data scientists alike can train and deploy machine learning solutions to production with ease.

This book will teach you how to use Azure AutoML with both the GUI as well as the AzureML Python software development kit (SDK) in a careful, step-by-step way. First, you’ll learn how to prepare data, train models, and register them to your Azure Machine Learning workspace. You’ll then discover how to take those models and use them to create both automated batch solutions using machine learning pipelines and real-time scoring solutions using Azure Kubernetes Service (AKS). Finally, you will be able to use AutoML on your own data to not only train regression, classification, and forecasting models but also use them to solve a wide variety of business problems.

By the end of this Azure book, you’ll be able to show your business partners exactly how your ML models are making predictions through automatically generated charts and graphs, earning their trust and respect.

What you will learn

  • Understand how to train classification, regression, and forecasting ML algorithms with Azure AutoML
  • Prepare data for Azure AutoML to ensure smooth model training and deployment
  • Adjust AutoML configuration settings to make your models as accurate as possible
  • Determine when to use a batch-scoring solution versus a real-time scoring solution
  • Productionalize your AutoML solution with Azure Machine Learning pipelines
  • Create real-time scoring solutions with AutoML and Azure Kubernetes Service
  • Discover how to quickly deliver value and earn business trust using AutoML
  • Train a large number of AutoML models at once using the AzureML Python SDK

Who this book is for

Data scientists, aspiring data scientists, machine learning engineers, or anyone interested in applying artificial intelligence or machine learning in their business will find this book useful. You need to have beginner-level knowledge of artificial intelligence and a technical background in computer science, statistics, or information technology before getting started with this machine learning book. Familiarity with Python will help you implement this book’s more advanced features, but even data analysts and SQL experts will be able to train ML models after finishing this book.

Table of Contents

  1. Introducing AutoML
  2. Getting Started with Azure Machine Learning Service
  3. Training Your First AutoML Model
  4. Building an AutoML Regression Solution
  5. Building an AutoML Classification Solution
  6. Building an AutoML Forecasting Solution
  7. Using the Many Models Solution Accelerator
  8. Choosing Real-Time versus Batch Scoring
  9. Implementing a Batch Scoring Solution
  10. Creating End-to-End AutoML Solutions
  11. Implementing a Real-Time Scoring Solution
  12. Realizing Business Value with AutoML

Automated Machine Learning with Microsoft Azure: Build highly accurate and scalable end-to-end AI solutions with Azure AutoML

 

 亲,网盘文件已删,下载链接已失效


因为,我,失业了!于是我老家十八线小县城找了份掏下水道的工作。。。
 
为了生活
 
我决定将iebueks电子网站由免费改为赞助入群:
 
一年45元
 
从百度网盘群满之日算起。
 
这45元除了最新的英文IT电子书,还包括:

免费找书服务,中文英文皆可

国内出版社出版的中文电子书  
中文电子书
2022年公考资料
2022年公考资料
2023年考研学习资料
2023年考研学习资料
人人素材网各种视频素材模板以及中文字幕教程
人人素材网

入群指南


扫描下面二维码关注微信公众号获取资源

微信公众号二维码

发表评论

您的电子邮箱地址不会被公开。 必填项已用*标注

Go