Math for Deep Learning: What You Need to Know to Understand Neural Networks

iebukes No Starch Press 184 次浏览 没有评论
Math for Deep Learning: What You Need to Know to Understand Neural Networks Front Cover

Math for Deep Learning: What You Need to Know to Understand Neural Networks

by Ronald T. Kneusel
  • Length: 344 pages
  • Edition: 1
  • Publisher: No Starch Press
  • Publication Date: 2021-11-23
  • ISBN-10: 1718501900
  • ISBN-13: 9781718501904
  • Sales Rank: #701741 (See Top 100 Books)
Description

Math for Deep Learning provides the essential math you need to understand deep learning discussions, explore more complex implementations, and better use the deep learning toolkits.

With Math for Deep Learning, you’ll learn the essential mathematics used by and as a background for deep learning.

You’ll work through Python examples to learn key deep learning related topics in probability, statistics, linear algebra, differential calculus, and matrix calculus as well as how to implement data flow in a neural network, backpropagation, and gradient descent. You’ll also use Python to work through the mathematics that underlies those algorithms and even build a fully-functional neural network.

In addition you’ll find coverage of gradient descent including variations commonly used by the deep learning community: SGD, Adam, RMSprop, and Adagrad/Adadelta.

Math for Deep Learning: What You Need to Know to Understand Neural Networks

 

 亲,网盘文件已删,下载链接已失效


因为,我,失业了!于是我老家十八线小县城找了份掏下水道的工作。。。
 
为了生活
 
我决定将iebueks电子网站由免费改为赞助入群:
 
一年45元
 
从百度网盘群满之日算起。
 
这45元除了最新的英文IT电子书,还包括:

免费找书服务,中文英文皆可

国内出版社出版的中文电子书  
中文电子书
2022年公考资料
2022年公考资料
2023年考研学习资料
2023年考研学习资料
人人素材网各种视频素材模板以及中文字幕教程
人人素材网

入群指南


扫描下面二维码关注微信公众号获取资源

微信公众号二维码

发表评论

您的电子邮箱地址不会被公开。 必填项已用*标注

Go